[bookmark: _GoBack]Symbolic model checking
Symbolic model checking is a formal verification technique used in the fields of logic and computation to verify the correctness of hardware and software systems. It's particularly useful for systems with a large number of possible states. Symbolic model checking is based on symbolic representations of the system's state space and properties, and it utilizes efficient algorithms to explore these representations.
Model Representation: In symbolic model checking, the system to be verified is represented symbolically. This typically involves modeling the system as a finite state transition system, often using formalisms like Kripke structures or labeled transition systems. The states, transitions, and properties are represented symbolically in a compact form, which helps manage the complexity of large state spaces.
Temporal Logic Specifications: Properties and requirements of the system are expressed in temporal logic, most commonly Linear Temporal Logic (LTL) or Computation Tree Logic (CTL). These logic specifications describe the desired behavior and correctness conditions of the system.
Symbolic Encoding: The symbolic encoding phase involves translating the system model and the properties into a logical formula. Each state, transition, and property is encoded as a logical expression using propositional logic or first-order logic. This encoding allows the system's behavior to be described using formal mathematical representations.
Symbolic State Space Representation: The state space of the system is explored symbolically, without explicitly enumerating all individual states. Data structures like Binary Decision Diagrams (BDDs) or And-Inverter Graphs (AIGs) are often used to efficiently represent and manipulate the symbolic state space.
Model Checking Algorithms: Symbolic model checking employs various algorithms to verify whether the system satisfies the given properties. The most commonly used algorithms include symbolic reachability analysis, model checking, and equivalence checking. These algorithms work on the symbolic state space representation and properties to determine if the system meets the specified requirements.
Counterexample Generation: If a property is violated, symbolic model checking can often produce a counterexample in symbolic form. This counterexample provides information about the system's behavior that leads to the property violation.
Decision Procedures: Symbolic model checking may rely on decision procedures for satisfiability checking, such as SAT solvers for propositional logic formulas or SMT (Satisfiability Modulo Theories) solvers for first-order logic formulas. These solvers play a crucial role in the verification process.
Efficiency and Scalability: The key advantage of symbolic model checking is its ability to handle systems with a vast number of states more efficiently than explicit enumeration. It can explore a large state space without running out of memory or computational resources.
Symbolic model checking is widely used in the verification of hardware and software systems, including digital circuits, concurrent and parallel programs, protocols, and more. It has been instrumental in ensuring the correctness and reliability of critical systems, especially those with complex and intricate behaviors.

